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We formulate the theory of the collective spin wave modes of arrays of spherical particles of ferromagnetic
material, under the assumption that each sphere in the array is magnetized uniformly. In addition, the inter-
sphere interactions have their origin in the magnetic fields generated by the precessing moments, appropriate to
the case where there is no direct physical contact between the spheres. The formulation is a real space analysis,
and thus can be applied in principle to disordered arrangements of spheres. While our formulation is quite
general, and is directly applicable to the case where both exchange and dipolar interactions influence spin
motions within an individual sphere, explicit calculations are presented for the case where exchange is absent.
The numerical calculations we discuss explore the collective spin wave modes of square planar arrays of
spheres, and consider the case where the spheres are magnetized both perpendicular and parallel to the plane.
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I. INTRODUCTION

Of course, magnetically ordered materials exhibit a spec-
trum of collective excitations known as spin waves. In vari-
ous forms of bulk magnetic matter, the nature of the spin
waves has been elucidated both in theory and in experiment
for many years now. More recently, interest has centered on
magnetic nanostructures, with attention to their response
characteristics. In case of ultrathin films and magnetic super-
lattices or multilayers fabricated from ultrathin films, for
some years now the spectrum of collective modes has been
studied experimentally.1 Both ferromagnetic resonance spec-
troscopy (FMR) and Brillouin light scattering(BLS)2 pro-
vide access to these modes, which of course control the re-
sponse characteristics of the structures, in the linear response
regime. It is the case that in these systems, considerable the-
oretical effort has been devoted to the study of their collec-
tive spin waves as well. It is fair to say that at this point the
physics of the collective excitations is well understood in
principle, at least for modes characterized by spatial scales
long compared to the underlying lattice constants of the me-
dia of interest.

Less clear by far is the nature of the collective spin wave
excitations of textured magnetic media, where the basic un-
derlying unit is not a film of infinite extent in the two direc-
tions parallel to the surface, but rather an entity of lower
symmetry such as a thin circular disc, a nanowire, or a
sphere. The latter case, that of the collective excitations of an
array of small magnetic spheres is of particular interest, since
magnetic recording media are in fact comprised of small
roughly spherical objects packed closely together. We have
been engaged in constructing the theory of the collective
excitations of textured magnetic nanostructures. In a recent
paper,3 we have addressed the nature of the exchange/dipole
spin wave spectrum of nanowires. The theory accounts
nicely for doublets observed in FMR studies of nanowires of
selected radii,4 and BLS studies of size quantization effects
on spin waves in small nanowires.5 We have recently
developed6 the theory of the collective spin wave excitations
of nanowire arrays, where the wires are not in direct physical
contact, and thus magnetostatic coupling between these enti-
ties lead to collective spin wave modes.

In this paper, we present the theory of the collective spin
wave modes of small magnetic spheres, once again for the
case where the coupling between the spheres has its origin in
magnetostatic fields generated by spin motions within the
constituent spheres. Our formulation is very general in na-
ture. For example, it is a real space formulation so it can be
applied to small clusters of spheres, as well as to the periodic
arrays we examine here in the numerical calculations pre-
sented below. It should be remarked, however, that the study
of clusters which contain an appreciable number of spheres
will require very large matrices to be handled numerically.
Periodic arrays, in which the spin waves have well defined
wave vector, may be studied efficiently. Our method is, in the
formal sense, a multiple scattering method similar in nature
to earlier work of Maystreet al.7 in their explorations of the
collective response of arrays of dielectric cylinders. In such
approaches, one assumes that the response function of an
isolated entity is known, and a self-consistent multiple scat-
tering methodology frames the description of the collective
modes of the array. In the magnetic case, through appropriate
choice of the response function of the individual entity one
can describe collective excitations of pure dipolar character,
or if desired one can incorporate both exchange and dipolar
interactions in the description of the response of an indi-
vidual sphere. In our study of the collective excitations of
nanowires, both dipolar interactions and exchange were in-
cluded fully.

The extension of the basic formulation from arrays of
cylinders to those of spheres requires a mathematical struc-
ture to be introduced. In the case of cylinders, an identity
known as Graf’s identity8 is central to rendering the theory
computationally accessible. One requires an equivalent for
the spherical coordinate system used in three dimensions, for
the description of spherical objects. We have recently devel-
oped the theory of the collective excitations of arrays of di-
electric spheres9 where we introduce a suitable identity simi-
lar in structure to the Graf identity which applies in
cylindrical coordinate systems. This identity may be used as
well in the present instance, to describe the collective spin
wave modes of arrays of magnetic spheres, as we shall see.
We also require, for the sphere, the function which describes
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the linear response of an individual sphere to a microwave
field of arbitrary spatial variation. This is not so simple, un-
fortunately, since the fact that the sphere is magnetized low-
ers its symmetry from that of an object invariant under arbi-
trary spatial rotations about its center, to one invariant only
to rotations about the axis along which the magnetization is
directed. Below we show that if we are willing to ignore
exchange, and describe the response of the sphere within the
magnetostatic approximation, then the appropriate response
function may be constructed. For the case where the sphere
is so small that exchange influences its response, the appro-
priate response function of the isolated sphere is not yet in
hand, though we have this topic under study at the time of
this writing. Thus, in the present paper, in our numerical
studies, we confine our attention to the pure magnetostatic
problem, wherein both interactions between spheres and the
intrasphere response may be described by magnetostatic
theory. Thus, our considerations apply to ferromagnetic
spheres whose radius exceeds the exchange lengthlC
=sD /4pMsd1/2. If we have in mind arrays of particles made
from the 3d transition metal ferromagnets, the theory pre-
sented here is applicable to spheres whose diameter is larger
than a few tens of nanometers. We hasten to emphasize that
our formulation of the coupling between the spheres is quite
general and is fully applicable to small spheres wherein the
response of the individual spheres is influenced by exchange
as well as dipolar fields generated by spin motions. Thus,
when developed, the response function of a single dipole/
exchange coupled sphere may be inserted directly into the
formalism described here, to give us a full theory valid for
particles whose diameters are comparable to or smaller than
the exchange length. This question is under active study at
present, as noted above.(Recently, we have completed a
computationally tractable formulation of the response func-
tion of an isolated sphere, with exchange included.)

This paper is organized as follows. In Sec. II we present
the formalism that we have developed, and in Sec. III we
describe results of calculations we have carried out, to pro-
vide an illustration of the collective mode spectrum of par-
ticular cases.

II. THE THEORETICAL FORMULATION

We consider an array of ferromagnetic spheres arranged
in some manner in space, each uniformly magnetized. In
principle, each sphere need not be identical, but in the inter-
ests of simplicity we assume this to be so in what follows.
The magnetizations of the spheres are parallel to each other,
and parallel to the axis we call theẑ axis. Imagine the mag-
netizations of the spheres in the array are excited, possibly
by an external applied magnetic field. As the magnetization
of a given sphere engages in its precessional motion at some
particular frequencyV, it generates a spatially nonuniform
dipolar field which couples to the precessing magnetization
of the other spheres in the array, with the result that the array
exhibits a spectrum of collective spin wave modes.

To obtain a description of these collective modes, we pro-
ceed with a logic similar to that employed in a different
physical context by the authors of Ref. 7. We locate the

origin of the coordinate system at the center of one selected
sphere, and examine its response to the combination of the
assumed externally generated driving field and the sum of
the dipolar fields generated by the motions of the magneti-
zation in the other spheres of the array. In the vicinity of the
origin, the total driving field seen by the selected sphere has
the form

hW stotdsrW,td = hW stotdsrWdexps− iVtd = − ¹W FM
stotdsrWdexps− iVtd.

s1d

Since all fields are described in the magnetostatic approxi-
mation, the fields near the origin may be expressed in terms
of the gradient of the magnetic scalar potentialFM

stotdsrWd. In
the vicinity of the origin, outside the other spheres and out-
side the sources which generate the external driving field, we
may cast the magnetic scalar potential in the form

FM
stotdsrWd = o

l=1

`

o
m=−l

l

Clm
stotdr lPl

mscosudexpsimwd, s2d

where sr ,u ,wd are the usual spherical coordinates and
Pl

mscosud is the associated Legendre function of the first
kind. We find it more convenient for our purposes to work
with these objects, rather than the closely related spherical
harmonics.

The analysis can be broken down into two distinct steps.
The first is to describe the response of the sphere at the origin
to driving fields generated by the magnetic scalar potential in
Eq. (2), and the second step is to express the coefficients
Clm

stotd in terms of appropriate amplitudes which describe the
motions of the magnetization of the other spheres in the ar-
ray, and also that of the external driving field. This will gen-
erate a set of equations which, upon setting the amplitude
ofthe driving field to zero, will lead to an array of equations
whose homogeneous form allows us to study the collective
modes of the array, and whose inhomogeneous form leads to
a description of its microwave response whose nature, of
course, is controlled by the collective mode spectrum. We
turn to each step in the analysis next.

A. Response of an individual sphere to an inhomogeneous
driving field

Suppose we consider a single sphere of radiusR with
center at the origin, driven by an externally applied magnetic
field whose vector potential is given by
Fl,m

sextdr lPl
mscosudexpsimwd. Our interest will center on the

description of the total magnetic field outside the sphere,
including the contribution generated by the motion of its
magnetization. Quite generally this may be derived from a
magnetic potential we write as

FM
s0dsrWd = Fl,m

sextdHr lPl
mscosud

+ o
l8

sl,l8
m sVd

Rl+l8+1

r l8+1
Pl8

mscosudJexpsimwd. s3d

The form in Eq.(3) recognizes that our problem has symme-

RODRIGO ARIAS AND D. L. MILLS PHYSICAL REVIEW B 70, 104425(2004)

104425-2



try lower than spherical symmetry, since the presence of the
spontaneous magnetization lowers the symmetry of the
spherical object so that the only rotational symmetry which
remains is that about theẑ axis. Thus, in language borrowed
from quantum mechanics, the azimuthal quantum numberm
remains a good quantum number, but this is not true for the
quantum numberl. Hence, in general, the response function
sl8,l

m sVd introduced in Eq.(3) will not be diagonal inl. As
noted in Sec. I, we shall examine the response of the sphere
at the origin in the magnetostatic limit, with exchange ig-
nored. In this special limit, we show below that the response
function is diagonal in the indexl, but it is useful to keep the
discussion general for the moment.

To construct the response function of the sphere in the
magnetostatic approximation, we may utilize treatments
which appeared many years ago. In a classic paper, Walker10

analyzed the magnetostatic modes of elliptical samples. Of
course, the sphere is a special limit of the more general ge-
ometry considered by him. More relevant to the present
analysis is the paper by Fletcher and Bell.11 These authors
consider the special case of the sphere in detail, providing
analytic formulae for the characteristic equations from which
frequencies of the various normal modes can be determined.
They also describe the response of the sphere to an external
microwave field, so in fact from their paper one can con-
struct the response function defined in Eq.(3). We provide a
brief sketch of the analysis, since this allows us to introduce
the various quantities which we require.

Outside the sphere, the total magnetic potential obeys
Laplace’s equation, whereas inside the sphere in the magne-
tostatic limit it obeys an anisotropic form of Laplace’s equa-
tion commonly referred to as the Walker equation. This can
be written as

s1 + kdS ]2

]x2 +
]2

]y2DFM
s0d +

]2

]z2FM
s0d = 0. s4d

If V is the frequency of the spin motion in the sphere andMs
is its magnetization, we introduce the dimensionless measure
of frequencyv=V /4puguMs, whereg is the gyromagnetic
ratio. Then k=vH / svH

2 −v2d and we shall encountern
=v / svH

2 −v2d. If H0 is the dc field which is applied parallel
to the magnetization, andHi =H0−4pMs/3 is the internal
field, thenvH=Hi /4pMs. Thus, in what follows, frequency
and magnetic fields are expressed as multiples of 4pMs.

The solutions of Laplace’s equation are well known and
elementary, and it is possible to generate families of solu-
tions to the Walker equation by expressing these in Cartesian
coordinates, then scaling thez coordinate appropriately.
However, the problem of matching solutions at the boundary
of the sphere then leads to a rather complex set of equations.
Walker noted closed form solutions can be obtained by re-
sorting to bispherical coordinates within the interior. In the
special case of the sphere itself, Fletcher and Bell find solu-
tions that are quite simple in structure. In what follows, we
shall be interested in reduced frequenciesv.vH where
k,0. The transformation to bispherical coordinatessj ,h ,wd
then takes the form

x = Rs− kd1/2s1 − j2d1/2 sinh cosw, s5ad

y = Rs− kd1/2s1 − j2d1/2 sinh sinw, s5bd

and

z= Rsk/f1 + kgd1/2j cosh. s5cd

On the sphere of radiusR the coordinatej assumes the
constant valuej0=sf1+kg /kd1/2, while h coincides with the
polar angleu of spherical coordinates. In the bispherical co-
ordinate system, the Walker equation admits separable solu-
tions of the formPl

msjdPl
mscoshdexpsimwd.

When analyzing the response of the sphere to an external
potential of the formr lPl

mscosud expsimwd one must match
the magnetostatic potential in the interior of the sphere to
that outside. One boundary condition is that the magnetic
potential be continuous; this insures continuity of tangential

components of the magnetic fieldhW derived from the gradient
of the potential. Quite clearly, from the remarks in the pre-
vious paragraph, a solution inside the sphere proportional to
Pl

msjdPl
mscoshd expsimwd may be matched to the formhr l

+sl
msR2l+1/ r l+1dj Pl

mscosud expsimwd applicable outside,
suggesting that in Eq.(3) sl8,l

m =dl8,lsl
m, i.e., it is diagonal in

the indexl. In addition, the radial component of the magnetic

induction bW must be conserved as well. After considerable
algebra, one may show that one may conserve radial compo-
nents of the magnetic induction as well with this special
form. We shall omit details, and just quote the final form for
the response function. We find

sl8,l
m = dl8,lsl

m =
sl − mndPl

msj0d − j0Pl
msj0d8

sfl + 1g + mndPl
msj0d + j0Pl

msj0d8
dl8l . s6d

In Eq. (6), the symbolPl
msj0d8 denotes the derivative of the

function with respect to its argument. Notice that in the fre-
quency rangevH,v, fvHsvH+1dg1/2, the quantityj0 is real
and positive, whereas whenv. fvHsvH+1dg1/2 it is pure
imaginary and is written asj0=−i uj0u.

As remarked above, with the response function of the
single sphere in hand, we may now turn our attention to the
response of the array of spheres. Before we address the array
of spheres, we should point out that we have yet to address a
complication not present in the earlier discussion of the di-
electric spheres.9 We will describe an array of ferromagnetic
spheres, each magnetized uniformly, with magnetizations of
all spheres parallel. The array is then placed in an external
magnetic field, as in the discussion just presented. For the
isolated sphere just described, then quite clearly the internal
dc magnetic field is spatially uniform, and assumes the value
Hi =H0−4pMs/3 introduced above. Now when the sphere at
the origin is surrounded by magnetized spheres in its near
vicinity, the internal field will differ from this value, by vir-
tue of the static dipole fields produced by the neighboring
spheres. This dipole field from neighbors is in fact spatially
non-uniform. We will argue below that it suffices as a first
approximation to retain only the spatially uniform portion of
the dipole field from the neighbors. This will then lead us to
employ the single sphere response function just derived, but
the internal field Hi is to be replaced byH0−4pMss1
+Gd /3 whereG is a correction to the internal field felt by the
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sphere at the origin, from the dc field generated by its neigh-
bors. We shall give explicit forms for the correction below. It
should be noted that in discussion of granular magnetic ma-
terials such as employed in recording media, the same ap-
proximation is widely used,12 and provides excellent quanti-
tative accounts of such materials.

B. Response of an array of spheres to an external driving
field; the collective spin wave modes of the spherical array

To begin, we need to set up a coordinate system. As in the
previous section, we shall focus attention on a single sphere
of radius R whose center is located at the origin of the
coordinate system, and we shall use the standard spherical
coordinatessr ,u ,wd to designate points in the vicinity of this
sphere. A vector from the origin of the coordinate system

to the center of spherej is RW 0s jd and its direction is
specified by the polar and azimuthal anglesu0s jd andw0s jd.
A vector from the center of spherej to a point of interest
is rWs jd and its direction is specified by the polar and azi-
muthal anglesus jd and ws jd. It will be convenient to intro-
duce the two functionsRl,msrWd=r lPl

mscosud expsimwd and
I l,msrWd=r−sl+1dPl

mscosud expsimwd which are regular and ir-
regular at the origin respectively, and vice versa at infinity.

We imagine the array of spheres to be driven by an exter-
nally applied magnetic field, also described within the mag-
netostatic approximation. It is thus generated through use of
an external magnetic potential whose sources lie outside the
array of spheres under consideration. Thus, in the near vicin-
ity of the origin, we may write

FM
sappld = o

l,m
Fl,m

sappldRl,msrWd. s7d

For the moment, the coefficientsFl,m
sappld need not be specified

in detail.
The magnetic field associated with the external potential

sets the magnetizations of all the spheres in the array in
motion, with the consequence that other spheres in the array
generate magnetostatic fields which combine with that of the
external field to drive the magnetization of the sphere at the
origin. The spatial part of the time dependent magnetic po-
tential in the vicinity of the origin which drives the magne-
tization of the sphere there may then be written in the form

FM
sextd = o

l,m
HFl,m

sappldRl,msrWd + o
jÞ0

Bl,ms jdI l,mfrWs jdgJ , s8d

whererWs jd=rW−RW 0s jd. The aim of this section is to derive a set
of self-consistent equations for the coefficientsBl,ms jd. Cen-
tral to our ability to do so is the identity13,14

I l,mfrWs jdg = I l,mfrW − RW 0s jdg

= s− 1dl o
l8=0

`

o
m8=−l8+m

l8+m

s− 1dm8−mSl + l8 − m8

l − m
D

3 Rl8,m−m8srWdI l+l8,m8fR
W

0s jdg. s9d

The identity is valid whenr ,R0s jd. In Eq. (9), the quantity

s n
m

d=n! / m! sn−md! is the binomial coefficient. The state-
ment in Eq.(9) allows us to cast the external potential in Eq.
(8) in the form

FM
sextdsrWd = o

l=0

`

o
m=−l

m=+l

Fl,m
sextdRl,msrWd, s10d

where

Fl,m
sextd = Fl,m

sappld + o
jÞ0

o
l8=0

`

o
m8=−l8

+l8

Bl8,m8s jds− 1dl8+m

3Sl + m+ l8 − m8

l8 − m8
D 3 I l+l8,m8−mfRW 0s jdg. s11d

From the discussion in the previous section, the magnetic
potential outside the sphere at the origin due to the preces-
sion of its magnetization has the form

FM
s0d = o

l8=0

`

o
m8=−l8

l8

Bl8,m8s0dI l8,m8srWd, s12d

where, in this instance, identifyingFl,m
sextd in Eq. (11) with the

quantityFl,m
sextd of the previous subsection

Bl8,m8s0d = o
l=0

`

Fl,m8
sextdsl,l8

m8sVdRl8+l+1. s13d

The statement in Eq.(13) combined with Eq.(11) pro-
vides us with a self-consistent set of equations for the ampli-
tudes hBl,ms jdj. These are the formal results on which the
calculations reported below are based. One may study the
microwave response of the array of spheres by solving the
inhomogeneous equations generated by this array, once a
form for the external driving potential is known or chosen.
Alternatively, one may see the frequencies of the collective
spin wave modes by finding the frequencies which allow a
nontrivial solution of the homogeneous equations formed by
setting the external potential to zero. If one considers a pe-
riodic array of spheres, as we do in the next section, then the
amplitudes may be assumed to have the Bloch formBl,ms jd
=Bl,ms0d expfikW ·RW 0s jdg, where the wave vectorkW lies in the
appropriate Brillouin zone.

In the concluding remarks of the previous subsection, it
was noted that when the response functionsl8,l

m sVd is gener-
ated, we must take due account of the influence of the dc
magnetic field generated by the magnetized spheres which
surround the sphere at the origin. It is a straightforward ex-
ercise, after making use of the identity in Eq.(9), to generate
an expression for the dc magnetic potential from which this
field may be generated. The expansion is in the form of a
series of the functionsRlmsrWd=r lPl

mscosud expsimfd. In gen-
eral, as remarked above, this field is spatially nonuniform,
and thus a full and complete inclusion of its influence is
nontrivial. However, for the periodic arrays we consider be-
low, the leading term in the series describes a spatially uni-
form magnetic field which, as mentioned at the end of the
previous subsection may be incorporated into the analysis by
a suitable redefinition of the internal field experienced by the
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sphere at the origin. We can proceed, in principle, by incor-
porating this uniform component of the field then calculating
the spectrum of collective modes which obtains as a first
approximation. If further refinement is desired, one can treat
the spatially nonuniform terms through an appropriate per-
turbation theory. Since the angular average of the spatially
nonuniform fields over solid angle is zero, it follows they
contribute first only in the second order of perturbation
theory. We confine our attention here to the mode spectrum
calculated in first approximation, wherein the dc field pro-
duced by the neighboring spheres is approximated as spa-
tially uniform. We remark, as noted earlier, the same ap-
proximation is utilized widely in the literature on granular
magnetic media.12

To calculate the correction to the internal field from the
surrounding magnetized spheres, one proceeds as follows.
First, if one considers a uniformly magnetized sphere, then
outside the sphere it is well known that the static field is that
of a point dipole of strength 4pMsR

3/3. If this sphere is
placed at an arbitrary point in space, the magnetostatic po-
tential near the origin may be calculated from the formalism
given above, noting the only nonzero coefficientBlms jd in
Eq. (8) is that withl =1,m=0. Then when one uses Eq.(9) to
express the resulting potential in terms of coordinates reck-
oned relative to the origin, and averages the resulting field
over the sphere at the origin, the only term that survives is
the term proportional toR10srWd. The field averaged over the
sphere at the origin has the same value as the field from an
array of point dipoles(it is, again, rigorous to treat the
spheres which generate the field as point dipoles) evaluated
at the center of the sphere at the origin, i.e., at the origin of
the coordinate system. We have carried out numerical studies
of the collective modes for two cases, one where a square
two-dimensional lattice of spins are magnetized parallel to
the plane, and one where they are magnetized perpendicular
to the plane. The relevant local field can be expressed
in terms of two-dimensional(2D) dipole sums, which can
be converted to rapidly converging series using methods
set forth many years ago.15 For the 2D square lattice mag-
netized in plane, the total internal field is given byH0
−s4pMs/3ds1−fR/Dg3ld, and for the case where the 2D
lattice is magnetized perpendicular to the plane we have
for the internal fieldH0−s4pMs/3ds1+2fR/Dg3ld, where
one has for the parameterl the sum l=s4p2/9df1
+24on=1

` ol=1
` n2K2s2pnldg=4.517, andD is the distance be-

tween spheres. We turn next to numerical calculations based
on the formalism just derived.

III. STUDIES OF THE COLLECTIVE MODES OF AN
ARRAY OF FERROMAGNETIC SPHERES AND THEIR

MICROWAVE RESPONSE

In the magnetostatic description of the response of indi-
vidual spheres employed here, one finds the isolated sphere
admits a large number of standing spin wave modes in the
frequency regime above the frequencygHi, where Hi =H0
−4pMs/3. A careful and remarkably complete discussion of
this mode spectrum can be found in the paper by Fletcher
and Bell.11 Most of these modes may be described as high

order multipole modes, characterized by rather large values
of the indicesl ,m in the discussion of Sec. II A.

We have carried out numerical studies of the spectrum of
collective waves of two-dimensional square lattice of ferro-
magnetic spheres for two cases. In the first, the spheres are
all magnetized perpendicular to the plane, and in the second
the spheres aremagnetized parallel to the plane. The collec-
tive modes then have Bloch character, with dispersion rela-
tions characterized by the two dimensional wave vectorkWi

which lies within the appropriate two-dimensional Brillouin
zone. For any choice of this wave vector, one finds a large
number of collective mode branches. Each reverts to a dis-
persionless, Einstein-oscillator-like branch whose frequency
equals that of the isolated sphere modes described by
Fletcher and Bell,11 in the limit that the lattice constant of the
square lattice becomes very large. The question we have ex-
plored in our studies is the evolution of this collective mode
spectrum as the lattice constant becomes comparable to the
diameter of the spheres themselves. We have explored sphere
separationsD down to 2.2R, with R the radius of the indi-
vidual spheres. For smaller lattice constants, a rather large
basis set is required to avoid convergence problems. In the
results presented below, the maximum value ofl included in
our basis set isl =2. We have checked convergence to find
the results for the low lying modes nicely converged with
this choice.

Nearly all of the modes examined show very little disper-
sion, even for lattice constants as small as 2.2R. The reason
is that these are derived from high order multipole modes of
the isolated sphere, which generate dynamic dipole fields
which fall off rapidly outside a given sphere, and which also
are very weak in magnitude, since the pattern of dynamical
magnetization in the spheres contains nearby regions where
magnetostatic potential differs in sign. An exception is the
uniform mode of the sphere which, in the language of Sec.
II A is characterized by the quantum numbersl =m=1. This
mode disperses markedly, for the lattice constants we have
examined. It crosses and hybridizes with higher order multi-
pole modes which have relatively flat collective mode
branches. Thus, qualitatively speaking, the collective mode
spectrum of the lattice of spheres consists of what one might
describe as a forest of dispersionless modes formed from
high order multipole modes of the individual spheres,
crossed by a dispersive branch with origin in the uniform
mode of the isolated spheres. This dispersive branch crosses
and hybridizes with the flat multipole branches it encounters.
In the cases we have explored in our studies, we find hybrid-
ization with a single branch.

We shall illustrate the point just made for the case where
the spheres are magnetized perpendicular to the plane, a ge-
ometry of interest in the case of granular media for perpen-
dicular recording. For this case, it should be remarked, the
spin wave collective mode spectrum breaks down into modes
of two different symmetry classes. This follows by noting in
Eq. (11) the second term involves the associated Legendre

function Pl8+l
m8−m for the case where the angleu=p /2. The

function PL
Mfcossp /2dg=PL

Ms0d vanishes whenever the sum
L+M is odd. It follows that if l and m are both even, the
coefficientsBl,ms0d are coupled only to coefficients for which
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both indices are either even, or both are odd integers. Simi-
larly, if the indices inBl,ms0d are both odd, then also the
equation couples this amplitude only to coefficients whose
indices are both even or both odd. We refer to the modes so
described asee-oo modes. If one of the two indices is even
(l or m) and the other is odd(m or l), then the coefficient
couples only to coefficients in which one index is even, or
the other odd. We refer to such modes aseo-oemodes. Upon
noting the identity which applies to the spherical harmonics
Yl,msu ,wd=s−1dl+mYl,msp−u ,wd one sees that the scalar po-
tential associated with theee-oo modes is even under reflec-
tion in thexy plane, whereas that associated with theeo-oe
modes is odd. If one excites the spheres with an externally
applied microwave field parallel to thexy plane, it is the
ee-oo modes that will be excited.

We note that in our earlier discussion of the collective
modes of planar arrays of dielectric spheres,9 we found for
the same reason that the collective modes can be decom-
posed into the two symmetry classes described. In the case of
the array of magnetic spheres, this decomposition obtains
only for the case where the magnetization is perpendicular to
the plane of the spheres. The magnetization is an axial vec-
tor, left unchanged by reflection in a plane perpendicular to
itself. However, if the magnetization is in plane, or canted
with respect to the normal to the plane, then reflection sym-
metry in thexy plane is no longer a “good symmetry” since
the component of magnetization parallel to the plane changes
sign under this reflection. In our mathematics, the breakdown
of this symmetry is expressed by the requirement that thez
axis be chosen parallel to the magnetizations of the spheres
in the array. Thus, if the magnetization is canted with respect
to the normal to the plane, it is no longer the case that all of
the Associated Legendre functions on the right-hand side of
Eq. (11) are evaluated foru=p /2.

In Fig. 1, for the caseD /R=3.0, we show the spectrum of
collective modes of the square array of ferromagnetic
spheres, in the frequency regime where one finds the disper-
sive branch associated with the uniform mode of the widely
separated spheres. The wave vector is directed along the[11]
direction in plane. At this separation, we see considerable
dispersion, and we note that the mode hybridizes with an
Einstein-like branch associated with a higher order multipole
mode. We show also the next higher branch, for which the
dispersion is very modest at this separation. As we have
seen, in computer simulations of arrays of small particles(in
the calculation of hysteresis loops, for example) the small
spheres often are approximated as structureless point dipoles.
The hybridization phenomenon displayed in Fig. 1 is a re-
flection of the fact that from the dynamic point of view, the
finite sphere is not equivalent to a simple point dipole with a
single resonant frequency, but has internal structure with
higher order multipole modes which may hybridize and mix
with the collective branch formed from the uniform mode, as
illustrated in Fig. 1. In Fig. 2, we show the collective modes
in the same region of the spectrum, for the case where the
spheres are broughtcloser together, to the point whereD /R
=2.2. Two things are evident in this case. First, the whole
spectrum has been downshifted in frequency, by virtue of the
dipole fields set up in the rather dense lattice. These are
the fields incorporated in the correction factorG=lsR/Dd3

discussed above. Also, we see increased dispersion, and a
considerably larger hybridization gap. We remark that we
have calculated the microwave response of our lattice of
spheres by subjecting them to a long wavelength driving
field, simulated by choosingFsappldsrWd to have the form

exps−QzdexpsiQW ·rWd. If the wave vectorQW is chosen near the
center of the two-dimensional Brillouin zone, then we can
simulate a field whose scale of spatial variation is long com-
pared to a lattice constant. By calculating the energy ab-
sorbed by such a lattice as a function of frequency, we find
the only mode that has substantial oscillator strength is the
lowest frequency zero wave vector mode in Figs. 1 and 2.
Thus, a ferromagnetic resonance study of such a material
would show only a single mode spectrum, in the limit the
spheres have radius very small compared to the microwave
wavelength. A similar statement will apply to Brillouin light

FIG. 1. For the two-dimensional lattice of ferromagnetic spheres
magnetized perpendicular to the plane, we show the wave vector
dependence of the dispersive branch of theee-oo mode spectrum
discussed in Sec. III and nearby branches, for the caseD /R=3.0,
with R the radius of an individual sphere in the lattice, andd the
separation between the centers of the spheres. The wave vector is
directed along the[11] direction of the lattice, and is expressed in
units of pÎ2/D. Frequency is in units ofsV−H0d /4pMs with H0

the externally applied dc field.

FIG. 2. The same as Fig. 1, but nowD /R=2.2.
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scattering studies. Finally, in Fig. 3, in the spectral region
where the strong, dispersive branch is found, we show a
dispersion curve for theeo-oe mode in this region, for
D /R=2.2. Clearly, when this is compared with the calcula-
tions presented in Fig. 2, we see very little dispersion indeed.

As remarked above, we have also carried out a series of
calculations for the case where the spheres are magnetized in
plane, to find results rather similar in character to those
shown above. In this case, there is no simple symmetry de-
composition one canmake for the collective modes, so all
branches appear in a single calculation.

IV. CONCLUDING REMARKS

We have developed the formalism through which one may
analyze the collective spin wave modes of arrays of ferro-
magnetic spheres where interactions between the precessing
magnetizations in the spheres are controlled by the dynamic
dipole fields generated by spin motions in the array. The
formalism is quite general, in that one can apply it to clusters
or small collections of spheres, as well as the two-
dimensional periodic lattice we have chosen to study in our
numerical analyses.

One requires the response function for the individual
spheres in the array as defined in Eq.(3), in order to carry
out explicit calculations. For the case where the internal re-
sponse of the sphere can be described by magnetostatic
theory, we have generated an explicit expression for this re-
sponse function, given in Eq.(6). The numerical calculations
presented in Sec. III employ this form. With the current in-
terest in magnetic nanostructures in mind, it would be highly
desirable to have in hand an extension of the expression in
Eq. (6) to the case where exchange as well as dipole inter-
actions influence the response of the single sphere. We re-
mark that we have devoted very considerable effort to the
task of generating such a form, and the challenge of doing so
is formidable, at least for the general case where dipole and
exchange effects are comparable in magnitude.
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